SpaceWire as a Cube-Sat Instrument Interface

Missions and Applications — Long

Susan C. Clancy, Matthew D. Chase, Anusha Yarkddichael D. Starch, James P. Lux

Jet Propulsion Laboratory, California InstituteTafchnology
Pasadena, CA, USA
susan.c.clancy@jpl.nasa.gov

Abstract— SpaceWire is used in the control and data interfee
for an instrument on a pair of small satellites, oe of which was
launched in summer 2017. The instrument SpaceWiraterface is
implemented in a Field Programmable Gate Array as a
instantiated core controlled by a LEON3FT CPU, whit is also
implemented as an instantiated core. The UT699 pecessor in the
flight computer provides the spacecraft side's SpaWire
interface.

A simple message based protocol consisting of foumressage
types was defined, based on existing SpaceWire stimds. One
was for passing commands to and responses from thestrument
in the form of text strings similar to those from asystem console
where each line of text is passed in a SpaceWire ssage. Another
was for passing spacecraft time to the instrumenfThe third was
for transferring files using a subset of the Remot&emory Access
Protocol (RMAP). The fourth was for retrieving scence data from
the instrument.

A set of user application programming interface (AR) routines
provided an abstracted interface to both the seriatonsole (used
during debug) and the SpaceWire device interface.

Early instrument development and testing was done ith a set
of utilities that controlled a Star-Dundee USB-SpaeWire brick
providing a user interface similar to a serial conele terminal
emulator with the addition of file and data transfes. Later in the
integration and test process, these utilities wetiategrated with the
COSMOS ground systems software used for spacecrabntrol,
providing a seamless transition from standalone irtsument tests
to benchtop flat-sat test and full spacecraft leveksts.

Keywords—cubesat; SpaceWire; LEON3FT; RMAP; COSMOS;
USB-Spacewire brick

|. INTRODUCTION

The instrument is commanded to collect data fouali®
minutes at a user specified time. The digital aigwocessing
algorithms produce data at about 5 Mbps whichoiestin flash
memory in the instrument. The ground operators camihthe
spacecraft to requests the science data, whitresnsed out to
the spacecraft at high speed over the SpaceWedant where
it is stored in spacecraft flash memory. Ultimatethe
spacecraft sends the data to a ground station veugrested.

There are provisions for the spacecraft to trarfdéerto and
from the instrument using a subset of the RMAPqurok[3]. In
addition, the instrument receives periodic timeaipd passed
from the onboard spacecraft GPS receiver onceandeso that
the time of capture can be set accurately.

1. PHYSICAL IMPLEMENTATION

The SpaceWire interface on the instrument side was

implemented using the Gaisler GRSpW2 core instgaatian the

Spacecraft Instrument

Spw

1pps

Figure 11-1 Spacecraft-Instrument Interfaces

Virtex 6 FPGA, along with the LEON3FT CPU core. eTh
LVDS pairs are directly connected to the pins withexternal
driver or receiver to minimize changes to the éxisprocessor
board design. The spacecraft Single Board Comd&BC)
[4,5] uses the UT699 CPU, which includes the Spdoe=W

SpaceWire is used in the command and data interfaggterface as part of the chip. CubeSat’s are philgismall and

between an instrument payload and the host spdteéldra host
spacecraft is a standard 3U (approximately 30cnemxllOcm)

spacecraft from Space Dynamics Laboratory in Logén, The

spacecraft provides the support infrastructurearsg@anels,
batteries, flight computer, GPS receiver, and watét control.
The instrument is based on the JPL Iris radio [hiclv uses a
Xilinx Virtex 6 Field Programmable Gate Array (FP&that

serves both as a digital signal processor andemgtrument
controller. The instrument runs the RTEMS operpigstem
[2] on an instantiated LEON3FT CPU core. SpaceWi¢ingsed
to pass commands to the spacecraft as ordinaryrteaaable
strings, and the spacecraft sends back telemésiyas human
readable strings.

compact, Omnetics NanoD (MIL-DTL-32139) connectoese
used throughout the spacecraft, with twisted paiesvfor the 5
cm cable. The SpaceWire interface used a 9 pifigroation,
with the pin assignment identical to the usual 8jgéice Micro-
D.

lll. PROTOCOL

The interface between the instrument and the spaiteses
four different variable length packet formats, eatd#ntified by
a unique protocol identifier (PID), shown in Tablel. The
use of different PIDs allows easy separation of tfessages



when received, without needing to further parsentiessage to
determine the content. For the most part, the spafte-light
Software (FSW) just passes the entire SpaceWiresages
through unchanged in either direction. The spadecommand
header is stripped off and the embedded SpaceWirenand
message is passed through to the instrument. pidtecols
described below are those processed by the instriime

Table IlI-1 Protocol Ids

PID PROTOCOL ID DESCRIPTION
0x01 RMAP — used for file and binary data transfer
to/from the instrument
OxFC text (ASCII) data to from the instrumeistdin,
stdout)
OxF1| Sampled Data as VITA-49 packets returned fram
the instrument
OxF2 GPS Binary message to the instrument

The SpaceWire packets follow the format definedha
SpaceWire Specification [6]. The packet includeteatination
address, payload of application specific data, andEnd of
Packet (EOP) marker as shown in Figure IlI-1.

For an instrument SpaceWire packet, the addresawass
OXFE, regardless of whether it was sent to or veckfrom the
instrument since it was a point to point link. Timstrument
includes the Protocol Id (PID) which identifies thacket type,
followed by the payload data, and ending with thgclic
Redundancy Check (CRC) used to detect data coorupti

Destinatior EOF

Address

Payloar

Figurel11-1 SpaceWire Packet Format

| oxFE | PID | Data | Data

Data | Data | CRC | EOP |

Figure 111-2 Packet Format

A. Serial Console Emulation

The instrument software provides a serial constje s
interface with variable length text commands whprbduce
variable length text response messages. These aodhand
response messages are identified using the Oxfk@deted. The
API routine used by the software to send text ngessaserts a
text sequence number and the instrument time befach
message.

TLA | oxF0 | Data | Data Data | Data | cRe | E0P |

Figure111-3 Text Packet Format

B. File Transfer To the I nstrument

File transfers to and from the spacecraft use aetudf the
existing RMAP protocol.
Protocol Id and the RMAP format which includesdlestination

These messages use th@El 0x

0ox01 Instruction Key (0xAS)

Initiater Addr Transaction |D (MSB) | Transaction |0 (LSB) ero

Address (MSB) Address Address Address (L5B)

Length [MSB) Length Length (LSB) Header CRC ‘

|Data Data | Data | Data | Data ‘ Data | Data | Data

| Data Data | Data Data Data { Data | CRC | EOP |

Figurell1-4 RMAP Write Format (data to instrument)

target logical address (TLA), RMAP header fieldstad RMAP
CRC, and end of packet marker. The RMAP headddsfie
identify the RMAP instruction, key, initiator addse
transaction id, address, length as shown in Fidgjlee The
address fields define the position within the fibeing
transferred and the length is the length of tha gattion within
the message. Write Reply messages are returnecheto t
spacecraft with the format given in Figure IlI-&ifNrite-With-
Reply instead of a Write-Without-Reply instructisrused.

Initiator Address |

Instrument Addr | Transaction 1D {MSB) | Transaction D (L5B) Header CRC

FigureI11-5 - Write Reply (ffom instrument, if requested)

ox01 | Instruction | Status ‘

To send a file, an FWRITE command is sent givirgriame
of the file and the maximum length of the file. Tiile length
allows allocation of the space in the in-memorg Blystem in
advance of the transfer. Then all the RMAP Writekeds are
sent with the file contents. The payload data feanh RMAP
Write message is written to the specified filetet &ddress in
the message header. After all the RMAP data messag sent,
an FCLOSE command is sent. RMAP messages received w
there is no active FWRITE are discarded with anoramessage.

C. File Transfer From the Instrument

Files are transferred from the instrument to thacepraft
by using RMAP Read messages as shown in Figuig@ Wn
FREAD command is sent to the instrument, and thEument
replies with a series of RMAP Read messages contpithe
file contents. The Transaction Id is used a s aeecg number
and used to detect missing messages by the groondgsing.

T
LA | 0x01 | Instruction Status ‘

Inst Logical Address | Transaction D (MSB) | Transaction 1D (LSB) zero ‘

Length (M5B) Length | Length (LSB) Header CRC ‘

Data | Data | Data @ Data | Data | Data | Data Data:

Figurell1-6 - RMAP Read (data frominstrument)



D. Science Data Transfer from the I nstrument

The primary science output of the instrument igjlstreams
of sampled data representing the received sengoalsi The
data is encoded in the Virtual Radio Transport (YRackets
defined in the VITA-49 specification [7]. A Spac&@#&/message
was defined that contained the entire VRT pack#t thie OxF1
protocol ID. A VRT packet stream consists of peigacbntext
packets interspersed in a stream of data pacletls,cntaining
250 samples. The context packet that precedetathepackets
identifies information about the data stream.

_TLA | OxF1 | Data | Data |+« | Data | Data | CRC | EOP
Figurelll-7 VITA-49 Data Packet

The command which starts sending science data slbow
pacing delay to be inserted between each messgiealty on
the order of 10 milliseconds, to limit the ovemdita rate to the
spacecraft.

E. GPSTime to the Instrument

The spacecraft uses a GPS receiver to determingntee
which is provided to the instrument via a GPS mgss&nt as a
0xF2 Protocol Id message. The original design eftistrument
used the time distribution message using a CCSD
Unsegmented Time proposed by Habgi@l. [8]. However, to
minimize the changes in the existing spacecrafhflsoftware,

a simpler message that encoded the GPS week aibothds
was used, as shown in Figure Il1-8.

GPS
Week
M3

GPS
Week
L5B

il
second
Msa

Ml

second

Mailli-

ek second

0xF2

Figure 111-8 GPS Packet Format

The GPS milliseconds represents the number ofsadbnds
that have elapsed between the GPS epoch and theR&wone-
pulse-per-second tick (1PPS), which is receivechatiscrete
input line. As each GPS message is processed,jibe GPS
time is saved and the system clock ticks are sterigld the
associated 1PPS tick. The instrument internalkcisdatched
on each 1pps, along with the last received GPSigdidbnds
value, which is used to calculate GPS time frontrimsent
internal clock time. Software logic detects missipps pulses
or GPS time messages that are out of sequence.

IV. SPACEWIRE API

The instrument software implements a simple messag

passing style APl to provide a consistent interfagethe
SpaceWire hardware. Transmit and receive taakdla data
sent or received and the GAISLER SPW2 SpaceWiréceev
driver library functions perform the low-level deeioperations
with the hardware. The “spacewire_init" functioombines
some of the low-level function calls needed toiatize the
hardware into a higher level API function call.

The API functions (Table IV-1) format data serunfi the
instrument into a SpaceWire message and queuaitragsmit
request to the transmit queue (TxQ). An instrumasér
application sending data calls one of the three 2dehd”
functions to send data as text (PID=F0), RMAP dat®=01),
or VITA-49 VRT data (PID=F1). The transmit taSeg Figure

Table Il -1 SpaceWir API

FUNCTION NAME DESCRIPTION
spacewire_init| Initialize and sets up tf
buffer for sending and
receiving dat

Send an RMAP data pack

send_data_packet(len,tid,t

send_text_packet(len,b
send_vita49 packet(len,b
send_write_reply_packet(le
id,buf)
set_fwrite_params(fn, fsiz

Send eext packe
Send VITA-49 packe
Send fwrite repl

Updates file IO name ar
size from the FWRITE
command

Decodes an RMAP pack
andwrites the data to a fi

Outputs packet data as
series of text messages wi
HEX ASCII encoded dat
values

Decodes and outputs t
contents of a packet in
series of text messages

write_packet_to_file(pk

dump_packet(buf,le
th

print_diag_packet(bu
len,opt)

)

IV-1) dequeues each TxQ entry and calls the SPW2 )

and spw_checktx() device driver functions. The sp§)

function transmits the packet out over SpaceWireThe

spw_checktx() function blocks until the packetrasmitted or
fails with an error. The transmit success anddtitistics are
updated and can be captured and reported by

“spacewire_status” command.

the

' VRTData
Exporter

[ Command |
Processor

File

“. Exporter |

\ B p
— . A
= o =
send_data_packet B
send_vitad9_packet
send_text_packet -

File
System

¥
7 o [ g e [ or

Cmd R
[re[or |[mwr /v [ cncfeor | LFE| o [ Vs come [ o
[#e || 01 [ RMAP Hdr /ata [ cae[|eor | [fe|r1 [ vima-a9pata |cre[eop

RMAP READ Data & | FE | F1 VITA-49 Data CRC | EOP
VITA-49 Format Data

N o™

™Q
Transmit
Task

FE Payload EOP

Figure 1V-2 SpaceWire Transmit Software Architecture

The receive task (see Figure IV-2) handles threegyof
incoming packets which are identified by their PIThese are
text commands (PID=0xF0), RMAP WRITE data (PID=0x01
or GPS data (PID=0xF2). The SPW2 spw_rx() and
spw_check_rx() device driver functions are calleithiv the
receiver task to receive packets. The spw_rx(¢tfan sets up
the input buffer to receive data and the check oig¥ks until
data arrives or detects a failure. The receiveesg and fail



statistics are updated and can be captured andedpoy the
“spacewire_status” command.

—_— //,,,_,, Sy / send_write_reply_packet
l / Shell \
/

| command |
. | ij
\\ Processor XQ—
L
ZF g
/o ™aQ y

{ \
| Transmit |
\_ Task /

\\7_ _//
[ i

[ cmea |
File System pnd

rmap_write to file

Comm

e [0 | Responseie | ac [ cor |
SpaceWire Cmd Response Packet
process_gps_msg
//f S
/ Rx_T
o “ &——— | FE| F2 | GPS Data | CRC | EOP

N Task SpaceWire GPS Data Packet

\\—\,,77/./’
FWRITE RMAP Hdr
‘ Fo | PWRITE T coc [eop \ FE [ 01 *;;ﬁdi:';d CRC | EOP
= FCLOSE r m
&FE 01 CRC
E command CRC | EOP . and Data -

SpaceWire Comand Packet SpaceWire RMAP WRITE Packet

Figure IV-2 SpaceWire Receive Software Architecture

Incoming text messages are forwarded to the comringuod
message queue which is serviced by the commanegsoc
Any incoming RMAP WRITE data packets are decodetitha
data is written to the file previously opened by RWRITE
command. Any incoming GPS data packets are preddsg
calling the GPS API.

The integrity of the incoming SpaceWire messages is

checked using the data CRC and, if it matchesxpeated CRC
value, the message is handled. If not, a recan® eount is
incremented and the message is discarded.

There are 4 API entry points shown in Table IV-lshimap
to specific commands that the instrument can recdrite()
and fclose() used before and after importing data & file, a
“configure” command to enable diagnostic messages, a
“status” command to report SpaceWire API statistics

Table IV-1 SpaceWire Related Commands API

FUNCTION DESCRIPTION

fclose_cmi Closes a file previously oped
by the FWRITE command

fwrite_cmc Creates zercfilled file of the

specified length in preparatign
for writing incoming RMAP
data

Configures SpaceWire Al
diagnostic option on or off}
When diagnostics are on, the
contents of sent and received
messages is output for
debugging
Reports
statistics

spacewire_cfg_cn

spacewire_status_ct SpaceWire Al

V. GROUND SUPPORTSOFTWARE

The spacecraft ground system and much of the ¢egtias
the open source COSMOS system from Ball Aerosp8cé()].

The COSMOS system uses the Ruby language with guoes
and modules written in Ruby to run test sequencesd
commands, receive and format telemetry. During the
development of the instrument, we had 3 fundamigntal
different use configurations:

e Test Bench Configuration - Standalone instrument on
the bench with a Star-Dundee USB-SpaceWire brick

FlatSat Configuration - Instrument connected ttséi
using a RS422 link

Spacecraft Configuration - Instrument integrateid in
the spacecraft

The Test Bench Configuration had a laptop compwidr
the Star-Dundee USB SpaceWire brick and assodiatésland
drivers connected via SpaceWire to the instrumenthis
configuration was used for the initial developmamd testing of
the instrument hardware and software.

The FlatSat Configuration is a breadboard configoma
including non-flight qualified instances of the sparaft Single
Board Computer and Interface Card. The spacecadibris
emulated in the FlatSat by a serial port connetiedPC. The
FlatSat includes a flight-like SpaceWire interfagth an uplink
/ downlink radio interface simulated over an RS-28@nection.

The Spacecraft Configuration has the instrumeeigiited
into the spacecraft and uses a ground station Ré&fdir the
uplink/downlink interface.

These configurations were accommodated by creaing
Ruby software class hierarchy (see Figure V-1) sbaported a
standard (configuration independent) interface ifveracting
with the instrument. In this way, all command ptgj unit-tests,
and other ground utilities operate with the instemtwithout

N

ﬂby Modules used by Cosmos

System Test and .
ibrati i Te
Calibration Scripts Unit Test

Operational
Command Script

Generalized Instrument Interface

Class Module GenericInstrumentInterface

\ Sub Classes of

enericinstrument nterface
Integrated
Instrument /

Ground Station
Radio Interface

Direct SpaceWire
Interface

FlatSat Interface

N

USB-Spacewire
Device Drivers

Serial Port Radio
Emulation

USB-Spacewire

w
o

Spacecraft

Instrument

Figure V -1 Different configurations support a standard
interface

Instrument

Instrument

I a I I




needing to be altered when the physical configomathanged.
Simply using a class’'s methoé,g. “send_inst_command”
allows the tests to works on any interface or cpmfition.

Ground processing software only needed to be writtece to
support all three testing configurations.

Ruby classes supporting the generic interface werated
to automatically separate the incoming telemetograbination
of instrument ASCII, file data, and VRT packets,toin
appropriate streams. These streams supported gtestirthe
instrument and software in a flight-like environrhen

ACKNOWLEDGMENT

This work was carried out at the Jet Propulsiondratory
in Pasadena (JPL), California, under contract withNational
Aeronautics and Space Administration. Referenasih to
any specific commercial product, process, or serig trade
name, trademark, manufacturer,
constitute or imply its endorsement by the U.S. &oment or
the Jet Propulsion Laboratory.

©2018 California Institute of Technology. Govermhe
sponsorship acknowledged.

or otherwise, does n

(1]

(2]
(3]

(4]
[5]

6]

[

8l
E)

[10

REFERENCES

Jet Propulsion Laboratory, “Iris V2.1 CubeSat D8gpce Transponder”,
https://www.jpl.nasa.gov/cubesat/pdf/Brochure_l@sy 201611-
URS_Approved_CL16-5469.pdf

OAR Corporation, Real Time Executive for Multipreser Systems —
RTEMS, https://www.rtems.org/

European Cooperation for Space Standardizationac¢SgEngineering;
SpaceWire Links, nodes, routers and networks,”, #ESST-50-12C,
July 2008

Space Dynamics Laboratory, “PEARL Spacecraft Platfp
http://www.sdl.usu.edu/downloads/pearl.pdéwnloaded 25 Feb 2018.
Q.Young, R. Burt, M. Watson, L. Zollinger “PEARL 6eSat Bus-
Building Toward Operational Missions”, Cubesat Sueniworkshop -8-
9 August 2009, Cal Poly San Luis

European Cooperation for Space Standardizationa¢SgEngineering;
SpaceWire Links, nodes, routers and networks,”, E#ESST-50-11F,
Dec 2006

ANSI, “ANSI/VITA 49.0-2015 VITA Radio Transport Stdard”,
https://shop.vita.com/ANSI-VITA-490-2015-VITA-Radibransport-
VRT-Standard-AV490.htm

S. Habinc, A. Sakthivel, M. Suess, “SpaceWire — §ilistribution
Protocol”, 2013 International Spacewire Conference.

R. Melton, “Ball Aerospace COSMOS open source condvand control
system,” Small Satellite Conference, August 2016.

Ball Aerospace, “COSMOS - The user interface fenemnd and control
of embedded systemdittp://cosmosrb.comftetrieved 25 Feb.




